

 Navigation

 	
 index

 	
 next |

 	Stencil 0.7.0 documentation

The Stencil template language

Stencil is a simple and powerful template language for Swift. It provides a
syntax similar to Django and Mustache. If you’re familiar with these, you will
feel right at home with Stencil.

There are {{ articles.count }} articles.

 {% for article in articles %}
 {{ article.title }} by {{ article.author }}
 {% endfor %}

struct Article {
 let title: String
 let author: String
}

 let context = Context(dictionary: [
 "articles": [
 Article(title: "Migrating from OCUnit to XCTest", author: "Kyle Fuller"),
 Article(title: "Memory Management with ARC", author: "Kyle Fuller"),
]
])

 do {
 let template = try Template(named: "template.html")
 let rendered = try template.render(context)
 print(rendered)
 } catch {
 print("Failed to render template \(error)")
 }

Contents:

	Templates
	Variables

	Tags

	Comments

	Built-in template tags and filters
	Built-in Tags

	Built-in Filters

	Context
	API

	Custom Template Tags and Filters
	Custom Filters

	Custom Tags

 Copyright 2016, Kyle Fuller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Stencil 0.7.0 documentation

Templates

	{{ ... }} for variables to print to the template output

	{% ... %} for tags

	{# ... #} for comments not included in the template output

Variables

A variable can be defined in your template using the following:

{{ variable }}

Stencil will look up the variable inside the current variable context and
evaluate it. When a variable contains a dot, it will try doing the
following lookup:

	Context lookup

	Dictionary lookup

	Array lookup (first, last, count, index)

	Key value coding lookup

	Type introspection

For example, if people was an array:

There are {{ people.count }} people. {{ people.first }} is the first
person, followed by {{ people.1 }}.

Filters

Filters allow you to transform the values of variables. For example, they look like:

{{ variable|uppercase }}

See all builtin filters.

Tags

Tags are a mechanism to execute a piece of code, allowing you to have
control flow within your template.

{% if variable %}
 {{ variable }} was found.
{% endif %}

A tag can also affect the context and define variables as follows:

{% for item in items %}
 {{ item }}
{% endfor %}

Stencil includes of built-in tags which are listed below. You can also
extend Stencil by providing your own tags.

See all builtin tags.

Comments

To comment out part of your template, you can use the following syntax:

{# My comment is completely hidden #}

 Copyright 2016, Kyle Fuller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Stencil 0.7.0 documentation

Built-in template tags and filters

Built-in Tags

for

A for loop allows you to iterate over an array found by variable lookup.

 {% for user in users %}
 {{ user }}
 {% endfor %}

The for tag can take an optional {% empty %} block that will be
displayed if the given list is empty or could not be found.

 {% for user in users %}
 {{ user }}
 {% empty %}
 There are no users.
 {% endfor %}

The for block sets a few variables available within the loop:

	first - True if this is the first time through the loop

	last - True if this is the last time through the loop

	counter - The current iteration of the loop

if

The {% if %} tag evaluates a variable, and if that variable evaluates to
true the contents of the block are processed. Being true is defined as:

	Present in the context

	Being non-empty (dictionaries or arrays)

	Not being a false boolean value

	Not being a numerical value of 0 or below

	Not being an empty string

{% if variable %}
 The variable was found in the current context.
{% else %}
 The variable was not found.
{% endif %}

Operators

if tags may combine and, or and not to test multiple variables
or to negate a variable.

{% if one and two %}
 Both one and two evaluate to true.
{% endif %}

{% if not one %}
 One evaluates to false
{% endif %}

{% if one or two %}
 Either one or two evaluates to true.
{% endif %}

{% if not one or two %}
 One does not evaluate to false or two evaluates to true.
{% endif %}

You may use and, or and not multiple times together. not has
higest prescidence followed by and. For example:

{% if one or two and three %}

Will be treated as:

one or (two and three)

== operator

{% if value == other_value %}
 value is equal to other_value
{% endif %}

Note

The equality operator only supports numerical, string and boolean types.

!= operator

{% if value != other_value %}
 value is not equal to other_value
{% endif %}

Note

The inequality operator only supports numerical, string and boolean types.

< operator

{% if value < other_value %}
 value is less than other_value
{% endif %}

Note

The less than operator only supports numerical types.

<= operator

{% if value <= other_value %}
 value is less than or equal to other_value
{% endif %}

Note

The less than equal operator only supports numerical types.

> operator

{% if value > other_value %}
 value is more than other_value
{% endif %}

Note

The more than operator only supports numerical types.

>= operator

{% if value >= other_value %}
 value is more than or equal to other_value
{% endif %}

Note

The more than equal operator only supports numerical types.

ifnot

Note

{% ifnot %} is deprecated. You should use {% if not %}.

{% ifnot variable %}
 The variable was NOT found in the current context.
{% else %}
 The variable was found.
{% endif %}

now

include

You can include another template using the include tag.

{% include "comment.html" %}

The include tag requires a FileSystemLoader to be found inside your context with the paths, or bundles used to lookup the template.

let context = Context(dictionary: [
 "loader": FileSystemLoader(bundle: [NSBundle.mainBundle()])
])

extends

block

Built-in Filters

capitalize

The capitalize filter allows you to capitalize a string.
For example, stencil to Stencil.

{{ "stencil"|capitalize }}

uppercase

The uppercase filter allows you to transform a string to uppercase.
For example, Stencil to STENCIL.

{{ "Stencil"|uppercase }}

lowercase

The uppercase filter allows you to transform a string to lowercase.
For example, Stencil to stencil.

{{ "Stencil"|lowercase }}

default

If a variable not present in the context, use given default. Otherwise, use the
value of the variable. For example:

Hello {{ name|default:"World" }}

join

Join an array with a string.

{{ value|join:", " }}

Note

The value MUST be an array of Strngs and the separator must be a string.

 Copyright 2016, Kyle Fuller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Stencil 0.7.0 documentation

Context

A Context is a structure containing any templates you would like to use in a
template. It’s somewhat like a dictionary, however you can push and pop to
scope variables. So that means that when iterating over a for loop, you can
push a new scope into the context to store any variables local to the scope.

You can initialise a Context with a Dictionary.

Context(dictionary: [String: Any]? = nil)

API

Subscripting

You can use subscripting to get and set values from the context.

context["key"] = value
let value = context["key"]

push()

A Context is a stack. You can push a new level onto the Context so that
modifications can easily be poped off. This is useful for isolating mutations
into scope of a template tag. Such as {% if %} and {% for %} tags.

context.push(["name": "example"]) {
 // context contains name which is `example`.
}

// name is popped off the context after the duration of the closure.

flatten()

Using flatten() method you can get whole Context stack as one
dictionary including all variables.

let dictionary = context.flatten()

 Copyright 2016, Kyle Fuller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Stencil 0.7.0 documentation

Custom Template Tags and Filters

You can build your own custom filters and tags and pass them down while
rendering your template. Any custom filters or tags must be registered with a
namespace which contains all filters and tags available to the template.

let namespace = Namespace()
// Register your filters and tags with the namespace
let rendered = try template.render(context, namespace: namespace)

Custom Filters

Registering custom filters:

namespace.registerFilter("double") { (value: Any?) in
 if let value = value as? Int {
 return value * 2
 }

 return value
}

Registering custom filters with arguments:

namespace.registerFilter("multiply") { (value: Any?, arguments: [Any?]) in
 let amount: Int

 if let value = arguments.first as? Int {
 amount = value
 } else {
 throw TemplateSyntaxError("multiple tag must be called with an integer argument")
 }

 if let value = value as? Int {
 return value * 2
 }

 return value
}

Custom Tags

You can build a custom template tag. There are a couple of APIs to allow you to
write your own custom tags. The following is the simplest form:

namespace.registerSimpleTag("custom") { context in
 return "Hello World"
}

When your tag is used via {% custom %} it will execute the registered block
of code allowing you to modify or retrieve a value from the context. Then
return either a string rendered in your template, or throw an error.

If you want to accept arguments or to capture different tokens between two sets
of template tags. You will need to call the registerTag API which accepts a
closure to handle the parsing. You can find examples of the now, if and
for tags found inside Stencil source code.

 Copyright 2016, Kyle Fuller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Stencil 0.7.0 documentation

Index

 Copyright 2016, Kyle Fuller.
 Created using Sphinx 1.3.5.

 _static/up-pressed.png

_static/comment.png

search.html

 Navigation

 		
 index

 		Stencil 0.7.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Kyle Fuller.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

